

INTERNATIONAL KIDNEY & MONOCLONAL GAMMOPATHY

RESEARCH GROUP
FOURTH INTERNATIONAL MEETING
MAY 23/24 - 2019

MONTREAL

Update on Treatment of PGNMID

Nelson Leung, MD

Disclosures

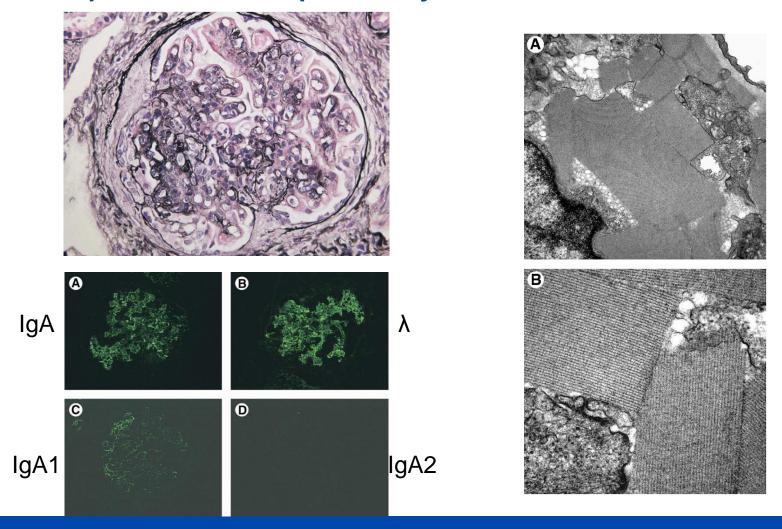
Relevant Financial Relationships

Grant: Omeros Corporation

Advisor: Aduro, BTG, and Takeda

Off-Label/Investigational Uses

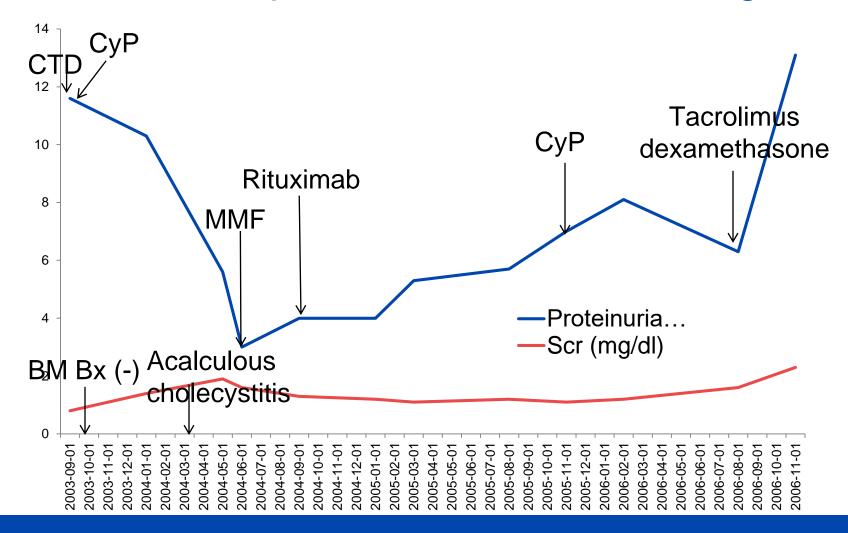
Takeda and Janssen; Bortezomib and daratumumab



Case #1

- 08/2003
 - 35 yo female presents with edema and hypertension
 - Scr was 0.8 mg/dl (70 µmol/L)
 - Proteinuria 10 g/d
- 09/2003
 - Renal biopsy was performed
 - Membranoproliferative glomerulonephritis

Membranoproliferative glomerulonephritis with IgA lambda deposits with paracrystalline substructures



Hematologic evaluation

- SPEP negative
- Serum/urine IFE negative
- Bone marrow biopsy no features of clonal proliferation

Disease course of a patient with MPGN with IgAx

Recurrence of monoclonal IgA lambda glomerulonephritis in kidney allograft associated with multiple myeloma

- 8/2003 nephrotic syndrome
- 6/2008 ESRD
- 6/2011 Living donor kidney Tx Monoclonal IgAλ detected pretransplant
- 12/2011 Scr 1.4 mg/dl (123 µmol/L)
 - Proteinuria 1.7 g/d
 - SPEP and UPEP IgAλ
 - Serum FLC: κ = 12.3 mg/L, λ = 8.65 mg/L, ratio = 1.43
 - Kidney biopsy recurrent proliferative GN with $IgA\lambda$ deposits
 - Bone marrow biopsy 30% λ light chain restricted PC
- 1/2012 Scr 3.3 mg/dl (290 µmol/L)

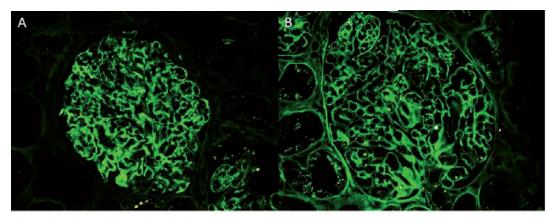
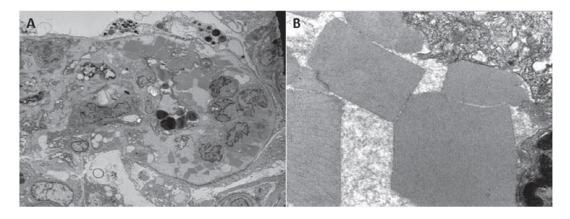
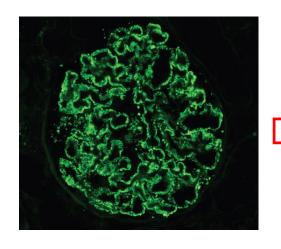



Figure 2. Immunofluorescent histology staining for IgA (A); λ (B).

Question


Why was rituximab ineffective in this patient?

- A. The dose of rituximab was inadequate
- B. Rituximab is ineffective in PGNMID
- C. Rituximab is less effective after cyclophosphamide
- D. All of the above
- E. None of the above

Old Paradigm in the Treatment of Kidney Diseases

Histology Disease Treatment

Membranous nephropathy Rituximab

A RANDOMIZED TRIAL OF METHYLPREDNISOLONE AND CHLORAMBUCIL IN IDIOPATHIC MEMBRANOUS NEPHROPATHY

Claudio Ponticelli, M.D., Pietro Zucchelli, M.D., Patrizia Passerini, M.D., Leonardo Cagnoli, M.D., Bruno Cesana, M.D., Claudio Pozzi, M.D., Sonia Pasquali, M.D., Enrico Imbasciati, M.D., Claudio Grassi, M.D., Bruno Redaelli, M.D., Mauro Sasdelli, M.D., and Francesco Locatelli, M.D.

8

Membranous Nephropathy Associated With an Unusual Phenotype of Chronic Lymphocytic Leukemia

CHRISTINE A. WHITE, MD, ROBERT O. DILLMAN, MD, AND IVOR ROYSTON MD

The nephrotic syndrome is uncommon in patients with chronic lymphocytic leukemia. When present, the most frequently documented cause is membranous nephropathy, although several other glomerular lesions have also been described. This report describes a patient with chronic lymphocytic leukemia of an unusual surface marker phenotype recently suggested to be associated with an increased incidence of proteinuria. Renal biopsy specimens demonstrated membranous glomerulonephritis. Immunofluorescence staining demonstrated glomerular deposition of IgG and C3, but not the human T-lymphocyte antigen, T65, which had been found on circulating leukemia cells.

Cancer 52:2253-2255, 1983.

Arthritis Rheum. 2001 Dec;44(12):2836-40.

Response of Wegener's granulomatosis to anti-CD20 chimeric monoclonal antibody therapy.

Specks U¹, Fervenza FC, McDonald TJ, Hogan MC.

Author information

Abstract

We report on the successful, compassionate use of the anti-CD20 chimeric monoclonal antibody rituximab in a patient with chronic, relapsing cytoplasmic antineutrophil cytoplasmic antibody (cANCA)-associated Wegener's granulomatosis (WG). The patient initially responded to treatment with glucocorticoids and cyclophosphamide. However, bone marrow toxicity during cyclophosphamide treatment of a relapse precluded its further use. Azathioprine and mycophenolate mofetil treatment had failed to maintain remission of the WG, and methotrexate was contraindicated. Because the patient's 5-year course was characterized by close correlation of cANCA levels with disease activity, selective elimination of cANCA was deemed a treatment option for his latest relapse. He was given 4 infusions of 375 mg/M2 of rituximab and high-dose glucocorticoids. Complete remission was associated with the disappearance of B lymphocytes and cANCA. Glucocorticoid treatment was then discontinued. After 11 months, the cANCA recurred, and rituximab therapy was repeated, without glucocorticoids. At 8 months after the second course of rituximab (18 months after the first course), the patient's WG has remained in complete remission. Elimination of B cells by rituximab therapy may prove to be an effective and safe new treatment modality for ANCA-associated vasculitis and possibly other autoimmune diseases. This modality warrants closer examination in a carefully conducted clinical trial.

© 2008 International Society of Nephrology

Rituximab treatment of idiopathic membranous nephropathy

FC Fervenza¹, FG Cosio¹, SB Erickson¹, U Specks², AM Herzenberg³, JJ Dillon¹, N Leung¹, IM Cohen¹, DN Wochos¹, E Bergstralh⁴, M Hladunewich⁵ and DC Cattran⁵

¹Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA; ²Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, Minnesota, USA; ³Department of Pathology, University of Toronto, Ontario, Canada; ⁴Division of Biostatistics, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA and ⁵Division of Nephrology, University of Toronto, Ontario, Canada

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

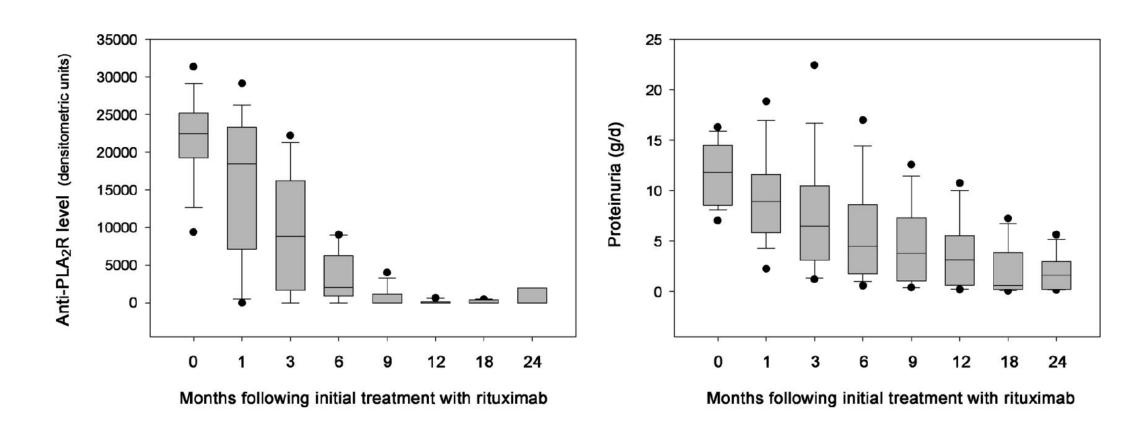
JULY 2, 2009

VOL. 361 NO. 1

M-Type Phospholipase A₂ Receptor as Target Antigen in Idiopathic Membranous Nephropathy

Laurence H. Beck, Jr., M.D., Ph.D., Ramon G.B. Bonegio, M.D., Gérard Lambeau, Ph.D., David M. Beck, B.A., David W. Powell, Ph.D., Timothy D. Cummins, M.S., Jon B. Klein, M.D., Ph.D., and David J. Salant, M.D.

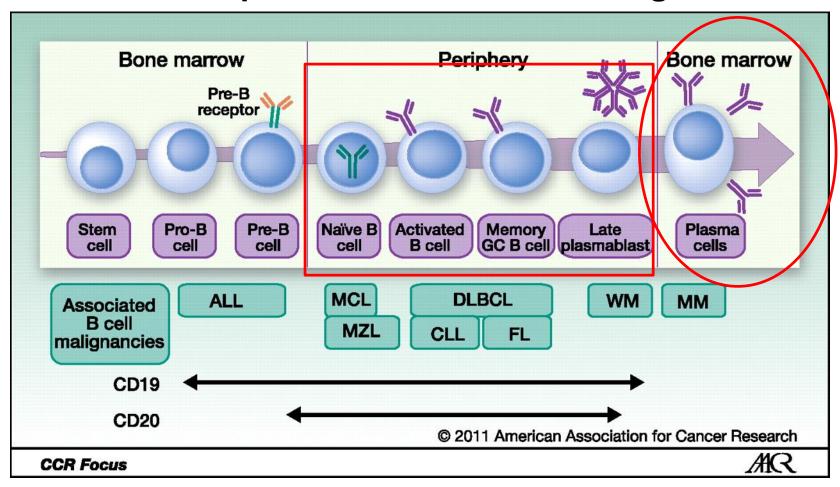
www.jasn.org


PLA2R and THSD7A: Disparate Paths to the Same Disease?

Laurence H. Beck Jr.

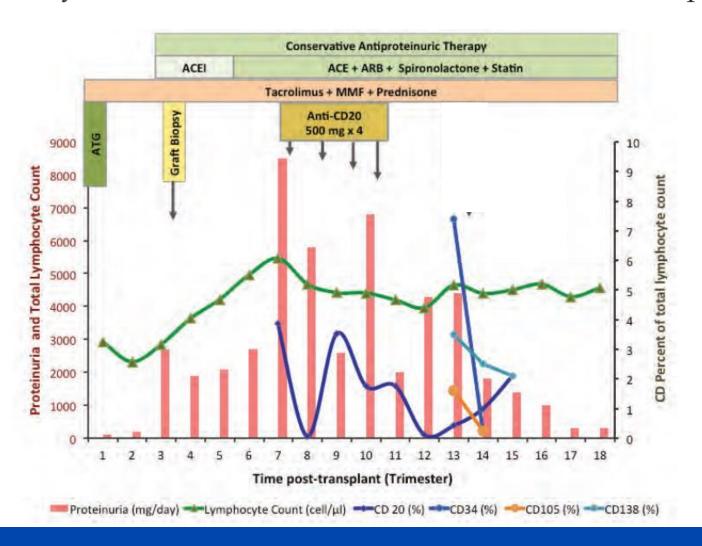
Renal Section, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts

Rituximab-Induced Depletion of Anti-PLA₂R Autoantibodies Predicts Response in Membranous Nephropathy



The Relationship between Hematologic and Renal Response

Hematologic response	Renal response	Proteinuria reduction >75%	Proteinuria reduction >95%
CR	72.4%	73.7%	52.6%
VGPR	55.1%	46.9%	16.3%
PR	25%	25%	0%
NR	25%	0%	0%


Pattern of expression of CD19 and CD20 antigens during B-cell development and associated malignancies.

Veronique Blanc et al. Clin Cancer Res 2011;17:6448-6458

Bortezomib as a Novel Approach to Early Recurrent Membranous Glomerulonephritis After Kidney Transplant Refractory to Combined Conventional Rituximab Therapy

Clone directed therapy

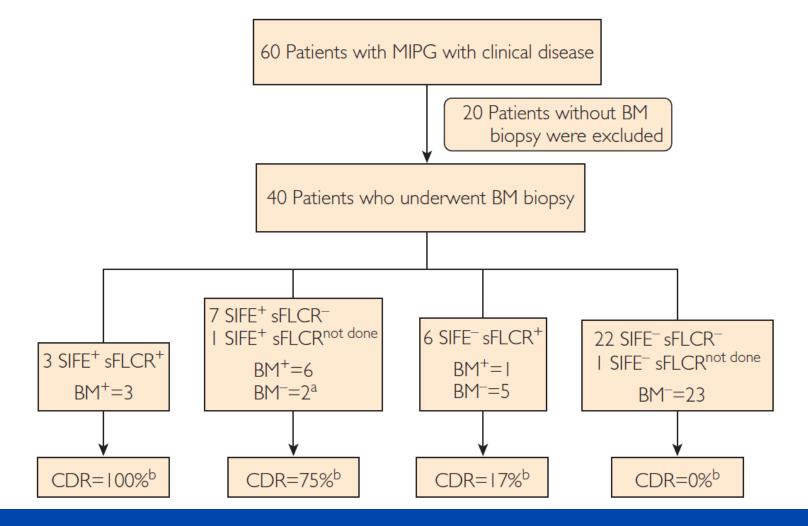
A clone-directed approach may improve diagnosis and treatment of proliferative glomerulonephritis with monoclonal immunoglobulin deposits

Ramnika Gumber¹, Jordana B. Cohen^{1,2}, Matthew B. Palmer³, Sidney M. Kobrin¹, Dan T. Vogl⁴, Alan G. Wasserstein¹, Sunita D. Nasta⁴, Melissa B. Bleicher¹, Roy D. Bloom¹, Laura Dember^{1,2}, Adam Cohen⁴, Brendan M. Weiss⁴ and Jonathan J. Hogan¹

Treatment of B-cell disorder improves renal outcome of patients with monoclonal gammopathy—associated C3 glomerulopathy

Sophie Chauvet,¹⁻³ Véronique Frémeaux-Bacchi,^{2,4} Florent Petitprez,⁵ Alexandre Karras,¹ Laurent Daniel,⁶ Stéphane Burtey,⁷ Gabriel Choukroun,⁸ Yahsou Delmas,⁹ Dominique Guerrot,¹⁰ Arnaud François,¹¹ Moglie Le Quintrec,¹² Vincent Javaugue,^{13,14} David Ribes,¹⁵ Laurence Vrigneaud,¹⁶ Bertrand Arnulf,¹⁷ Jean Michel Goujon,^{14,18} Pierre Ronco,¹⁹ Guy Touchard.^{13,14} and Frank Bridoux^{13,14}

A clone-directed approach may improve diagnosis and treatment of proliferative glomerulonephritis with monoclonal immunoglobulin deposits


Ramnika Gumber¹, Jordana B. Cohen^{1,2}, Matthew B. Palmer³, Sidney M. Kobrin¹, Dan T. Vogl⁴, Alan G. Wasserstein¹, Sunita D. Nasta⁴, Melissa B. Bleicher¹, Roy D. Bloom¹, Laura Dember^{1,2}, Adam Cohen⁴, Brendan M. Weiss⁴ and Jonathan J. Hogan¹

	Clone		Treatment duration	Response	(mo)	
		Therapy			PR	CR
Group	1: clone-detected, clone-directe	d therapy				
1	Lympho-plasmacytic	RTX/CY/BOR/D	3 mo	CR	14.3	16.3
2	B cell	Chlorambucil	NA	PR	NA	_
3	B cell	RTX/PRED	6 mo	CR	1.2	3.3
4	Plasma cell	CY/BOR/D	6 mo	CR	5.1	33.3
Group	2: clone-detected, nondirected	therapy				
5	Plasma cell	MMF/PRED	2.5 mo	None	_	_
6	Plasma cell	PRED	22 mo	PR	15.2	_
Group	3: no clone-detected, empirical	therapy				
7	None	RTX/CY/PRED	9 mo	CR	2	8.7
8	None	RTX/CY/PRED	3.5 mo	PR	7.3	_
9	None	RTX	1 cycle of RTX 1000 mg i.v. $ imes$ 2	CR	3.3	21.1
10	None	CY/PRED	2 mo	PR	5.2	_
11	None	RTX/PRED	6 mo	PR	9.2	_
12	None	RTX/CY/PRED	6 mo	None	_	_
13	None	RTX	6 mo	PR	11	_
14	None	RTX/PRED	6 mo	None	_	_
15	None	RTX/CY/BOR/D	6 mo	CR	1.1	6.5
16	None	BOR/D	6 mo	PR	3	_

Time to response

Rates of Clonal Detection

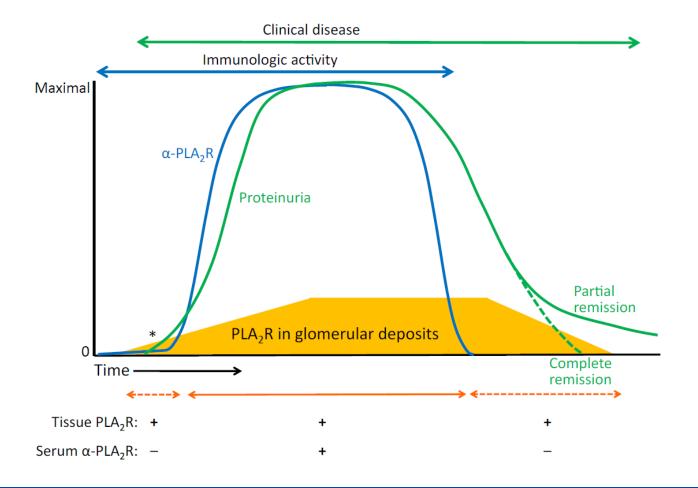
Clones involved in PGNMID

BM ⁺			21 1 1 1 4 70/			
patient No.	BM microscopy (aspirate/biopsy)	Flow cytometry	Clone detection 17%			
I	Two small- to medium-sized suspicious nodular lymphocyte aggregates (10% BM)	λ-restricted CD20 ⁺ B cells	Plasma cell – 50%			
2	An atypical lymphoid infiltrate composed of small lymphocytes involving \sim 30% of the BM cellularity	A monotypic κ B-cell population expressing CD20	CD20+ - 30% CD20+CD38+ - 20%			
3	Per outside BM report, 8.3% κ-restricted plasma cells that were CD138 ⁺ , CD20 ⁺ , and CD19 ⁺					
4	Per outside BM report: <5% clonal and atypical plasma cells					
5	Per outside BM report: 5% κ-restricted plasma cells in 50% cellular BM					
6	Slight increased plasma cells in quantity (5%); single interstitial cells and tiny aggregates	Monotypic λ (bright) CD20 ⁺ B-cell population forming 0.8% of cells in the sample; rare polytypic plasma cells	Slight increase in CD20 ⁺ B cells and CD138 ⁺ plasma cells; light chain restriction could not be assessed owing to technical artifact			
7	Touch imprint: BM differential within reference limits	Not performed	5%-10% CD138-staining plasma cells showing λ light chain restriction			
8	No substantial abnormality	κ light chain—restricted plasma cells identified	Plasma cells number 5%, interstitial distribution (CD138 ⁺)			
9	Touch imprint: BM differential within reference limits	Small, abnormal plasma cell population (0.2 with κ light chain restriction noted in a background of polyclonal plasma cells	%) CD138 ⁺ plasma cells (5%); lack definitive light chain restriction			
10	Abnormal lymphocytic infiltrates present (80% of cellularity)	λ restricted, CD20 $^+$ B cells (82% of total events)	Not performed			

A clone-directed approach may improve diagnosis and treatment of proliferative glomerulonephritis with monoclonal immunoglobulin deposits

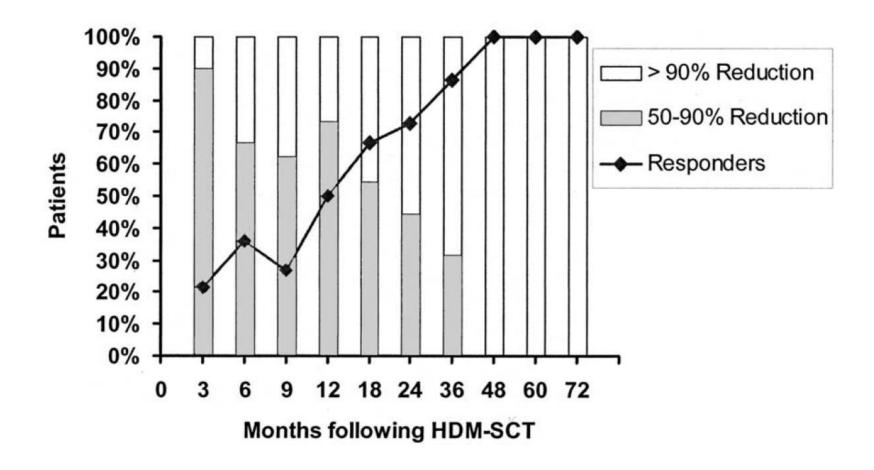
Ramnika Gumber¹, Jordana B. Cohen^{1,2}, Matthew B. Palmer³, Sidney M. Kobrin¹, Dan T. Vogl⁴, Alan G. Wasserstein¹, Sunita D. Nasta⁴, Melissa B. Bleicher¹, Roy D. Bloom¹, Laura Dember^{1,2}, Adam Cohen⁴, Brendan M. Weiss⁴ and Jonathan J. Hogan¹

	Clone	Therapy	Treatment duration	Response	(mo)	
					PR	CR
Group 1:	clone-detected, clone-directe	d therapy				
1	Lympho-plasmacytic	RTX/CY/BOR/D	3 mo	CR	14.3	16.3
2	B cell	Chlorambucil	NA	PR	NA	_
3	B cell	RTX/PRED	6 mo	CR	1.2	3.3
4	Plasma cell	CY/BOR/D	6 mo	CR	5.1	33.3
Group 2:	lone-detected, nondirected	tnerapy				
5	Plasma cell	MMF/PRED	2.5 mo	None	_	_
6	Plasma cell	PRED	22 mo	PR	15.2	_
Group 3:	no clone-detected, empirical	therapy				
7	None	RTX/CY/PRED	9 mo	CR	2	8.7
8	None	RTX/CY/PRED	3.5 mo	PR	7.3	_
9	None	RTX	1 cycle of RTX 1000 mg i.v. $ imes$ 2	CR	3.3	21.1
10	None	CY/PRED	2 mo	PR	5.2	_
11	None	RTX/PRED	6 mo	PR	9.2	_
12	None	RTX/CY/PRED	6 mo	None	_	_
13	None	RTX	6 mo	PR	11	_
14	None	RTX/PRED	6 mo	None	_	_
15	None	RTX/CY/BOR/D	6 mo	CR	1.1	6.5
16	None	BOR/D	6 mo	PR	3	_



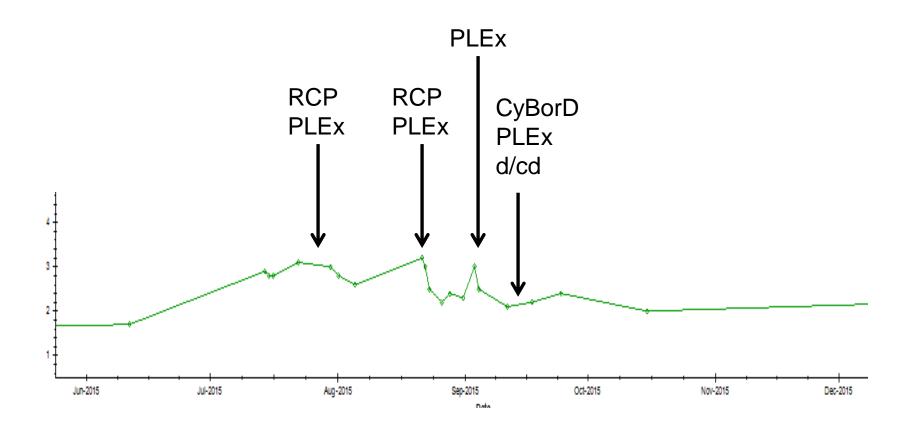
Challenges with treating PGNMID

- No monoclonal protein (70-80%)
 - Hematologic response cannot be assessed
 - Need to rely on renal response



Delay Between Anti-PLA2R Titer and Disease Activity

Renal Response after ASCT



Challenges with treating PGNMID

- No monoclonal protein (70-80%)
 - Hematologic response cannot be assessed
 - Need to rely on renal response
- Lack of clone (>80%)
 - Which clone to target?
 - Lack of renal response
 - Was the wrong clone targeted?
 - Was the right clone targeted but treatment was not effective?
 - Hematologic response was achieved but there is no renal response?

Treatment course

Challenges with treating PGNMID

- No monoclonal protein (70-80%)
 - Hematologic response cannot be assessed
 - Need to rely on renal response
- Lack of clone (>80%)
 - Which clone to target?
 - Lack of renal response
 - Was the wrong clone targeted?
 - Was the right clone targeted but treatment was not effective?
 - Hematologic response was achieved but there is no renal response?

Case #2

26 yo female

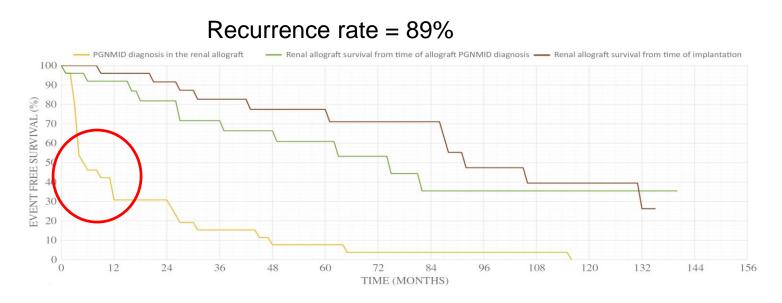
PMH

- 2003 AML in complete remission
- 2012 nephrotic syndrome C3 GN after URI
 - Rx with prednisone/ ACTH/ Rituximab x 3 doses → ESRD
- 2016 February LRD kidney transplant
 - June PGNMID in the kidney allograft
 - Rituximab/ cyclophosphamide/ PLEx
 - December ESRD
- 2017 November Rituximab x 2
- 2018 March 01 second LRD kidney transplant
 - April 26 proteinuria detected. Allograft biopsy PGNMID

NEPHROLOGY

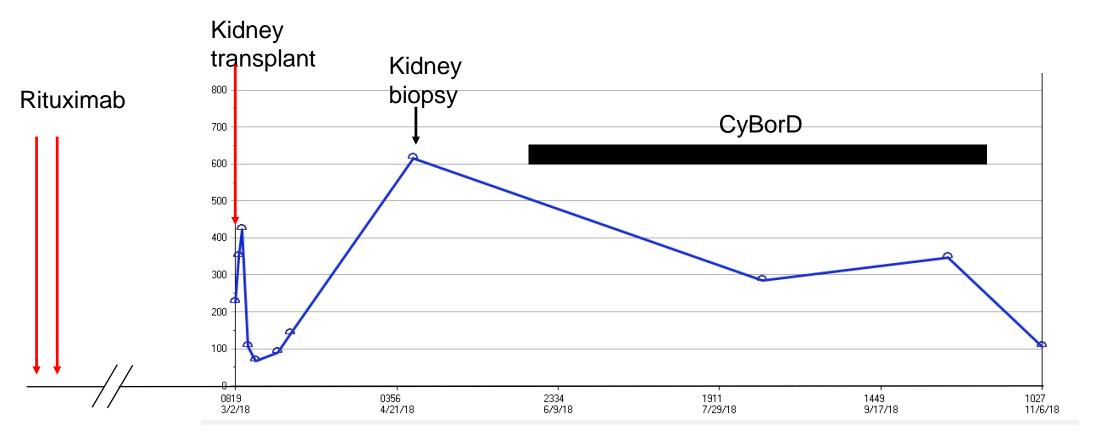
Nephrology 23, Suppl. 2 (2018) 76-80

Brief Communication


A case of recurrent proliferative glomerulonephritis with monoclonal IgG deposits or *de novo* C3 glomerulonephritis after kidney transplantation

TOMOMI TAMURA,^{1*} KOHEI UNAGAMI,^{1*} MASAYOSHI OKUMI,² YOICHI KAKUTA,² SHIGERU HORITA,³ HIDEKI ISHIDA,² JUNKI KOIKE,⁴ KAZUHO HONDA,⁵ KAZUNARI TANABE² and KOSAKU NITTA¹

¹Department of Nephrology, ²Department of Urology, ³Division of Pathology of Kidney Center, Tokyo Women's Medical University, ⁵Department of Anatomy, School of Medicine, Showa University, Tokyo, and ⁴Department of Pathology, Kawasaki Municipal Tama Hospital, Kawasaki, Japan


Renal allograft survival of allografts with PGNMID

2 patients who lost their graft had a second kidney transplant and PGNMID recurred within 4 months of the second transplant

Proteinuria

Case #2 cont

- 2018 Hematologic evaluation serum/urine immunofixation negative bone marrow biopsy/ peripheral blood flow cytometry - negative
 - May CyBorD x 3.5 cycles
 - November abdominal pain and acute kidney injury → allograft pyelonephritis

Challenges with treating PGNMID

- No monoclonal protein (70-80%)
 - Hematologic response cannot be assessed
 - Need to rely on renal response
- Lack of clone (>80%)
 - Which clone to target?
 - Lack of renal response
 - Was the wrong clone targeted?
 - Was the right clone targeted but treatment was not effective?
 - Hematologic response was achieved but there is no renal response?

Patient #1

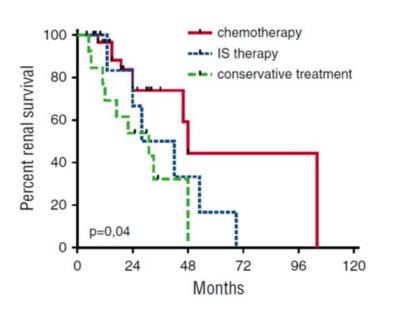
- 62 yo male was found to have progressive kidney disease.
 - Creatinine increased from 1.1 mg/dl to 2.5 in 26 months
 - Proteinuria = 10 g/d
- Renal biopsy (09/07)
 - Type I MPGN
 - Diffuse granular 1+ staining of glomeruli for IgM, and no staining of glomeruli for IgA, kappa light chain, fibrinogen, or albumin
 - Immunofluorescence staining is performed on an outside frozen block for IgG subclasses. The glomeruli show 3+ granular mesangial and capillary loop staining for IgG1 and negative staining for IgG2, IgG3, and IgG4. The staining pattern is compatible with a membranoproliferative glomerulonephritis with monoclonal IgG1 lambda deposition.

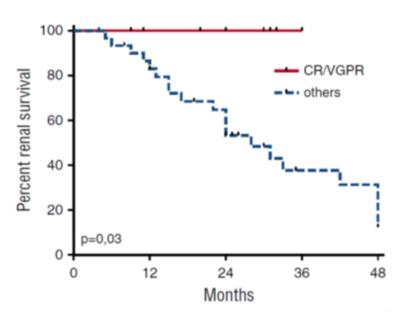
Hematologic evaluation

- SPEP negative
- Serum IFE IgG lambda
- FLC
 - Kappa 5.12
 - Lambda 3.68
 - Ratio 1.39
- Bone marrow 10% involvement of chronic lymphocytic leukemia
- Rituximab 1 cycle was given
 - Serum IFE became negative

Treatment course

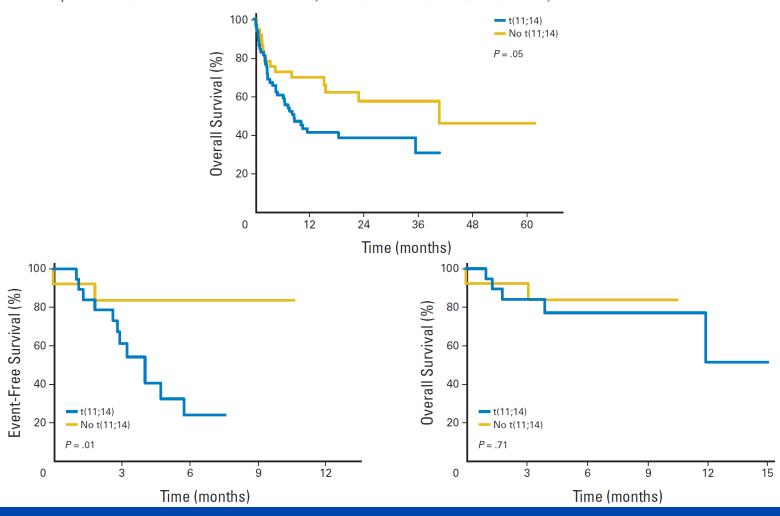
- Minimal response to rituximab
- Progressed to ESRD 4 months after rituximab
- 4/23/13
 - Serum IFE remains negative
 - Underwent DD kidney transplant
 - Time 0 biopsy severe acute tubular injury
- 8/12/13
 - Scr = 1.3 mg/dl
 - Proteinuria 61 mg/d
 - FLC
 - Kappa 1.27
 - Lambda 1.09
 - Ratio 1.17


Posttransplant course continues


- Renal allograft biopsy
 - 1) Recurrent proliferative glomerulonephritis with monoclonal IgG deposits
 - 2) Transplant arteriopathy. (Banff: mm0, g0, t0, i0, v0, cg0, ct0, ci0, cv2, cvi1, ahi1, ptc0, C4d0, ti0).
- Flow cytometry
 - A small lambda light chain restricted B-cell clone, consistent with CLL
- Treatment (01/14)
 - Rituximab
 - Cyclophosphamide
 - Prednisone
- 04/16
 - Scr = 1.4 mg/dl
 - Proteinuria = 64 mg/d

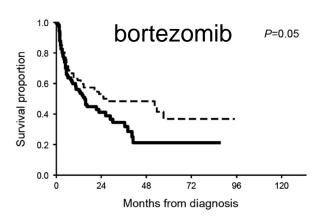
Treatment of B-cell disorder improves renal outcome of patients with monoclonal gammopathy-associated C3 glomerulopathy

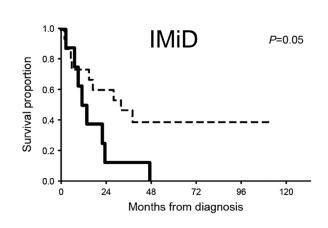
Sophie Chauvet,¹⁻³ Véronique Frémeaux-Bacchi,^{2,4} Florent Petitprez,⁵ Alexandre Karras,¹ Laurent Daniel,⁶ Stéphane Burtey,⁷ Gabriel Choukroun,⁸ Yahsou Delmas,⁹ Dominique Guerrot,¹⁰ Arnaud François,¹¹ Moglie Le Quintrec,¹² Vincent Javaugue,^{13,14} David Ribes,¹⁵ Laurence Vrigneaud,¹⁶ Bertrand Arnulf,¹⁷ Jean Michel Goujon,^{14,18} Pierre Ronco,¹⁹ Guy Touchard,^{13,14} and Frank Bridoux^{13,14}

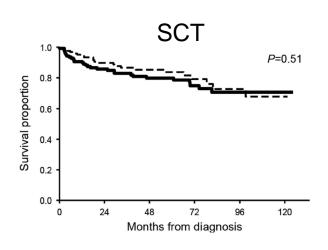


Translocation t(11;14) Is Associated With Adverse Outcome in Patients With Newly Diagnosed AL Amyloidosis When Treated With Bortezomib-Based Regimens

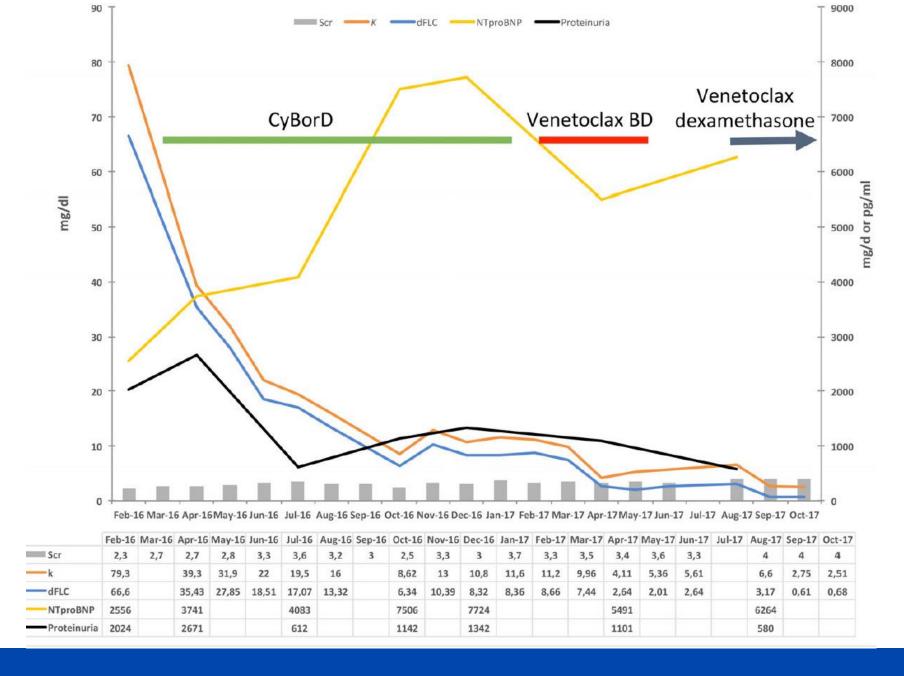
Tilmann Bochtler, Ute Hegenbart, Christina Kunz, Martin Granzow, Axel Benner, Anja Seckinger, Christoph Kimmich, Hartmut Goldschmidt, Anthony D. Ho, Dirk Hose, Anna Jauch, and Stefan O. Schönland

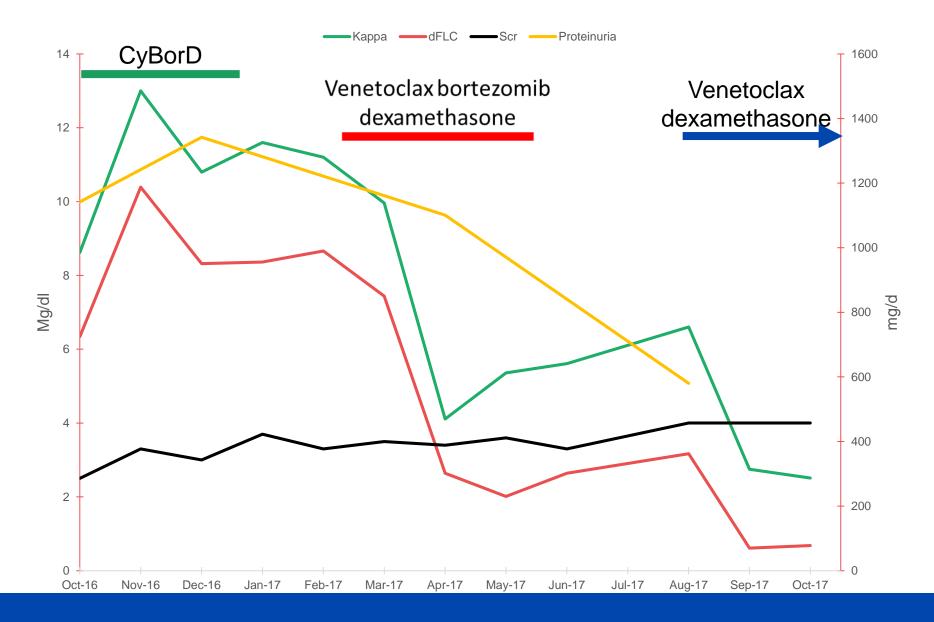





ORIGINAL ARTICLE

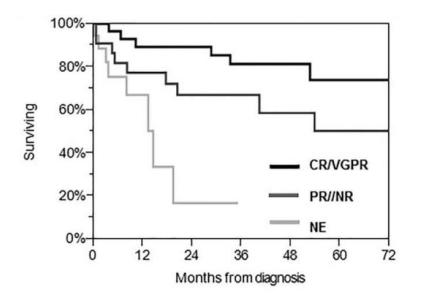
Interphase fluorescence *in situ* hybridization in untreated AL amyloidosis has an independent prognostic impact by abnormality type and treatment category


E Muchtar¹, A Dispenzieri¹, SK Kumar¹, RP Ketterling², D Dingli¹, MQ Lacy¹, FK Buadi¹, SR Hayman¹, P Kapoor¹, N Leung^{1,3}, R Chakraborty^{1,4}, W Gonsalves¹, R Warsame¹, TV Kourelis¹, S Russell¹, JA Lust¹, Y Lin¹, RS Go¹, S Zeldenrust¹, RA Kyle¹, SV Rajkumar¹ and MA Gertz¹



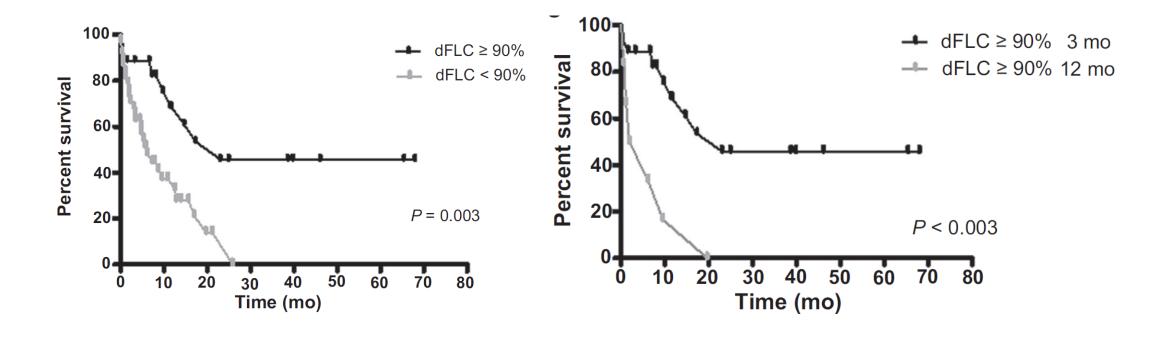
Challenges with treating PGNMID

- No monoclonal protein (70-80%)
 - No hematologic markers to follow
 - Need to rely on renal response
- Lack of clone (>80%)
 - Which clone to target?
 - Lack of renal response
 - Was the wrong clone targeted?
 - Was the right clone targeted but treatment was not effective?
 - Hematologic response was achieved but there is no renal response?
 - The point of no return



Outcomes of patients with renal monoclonal immunoglobulin deposition disease

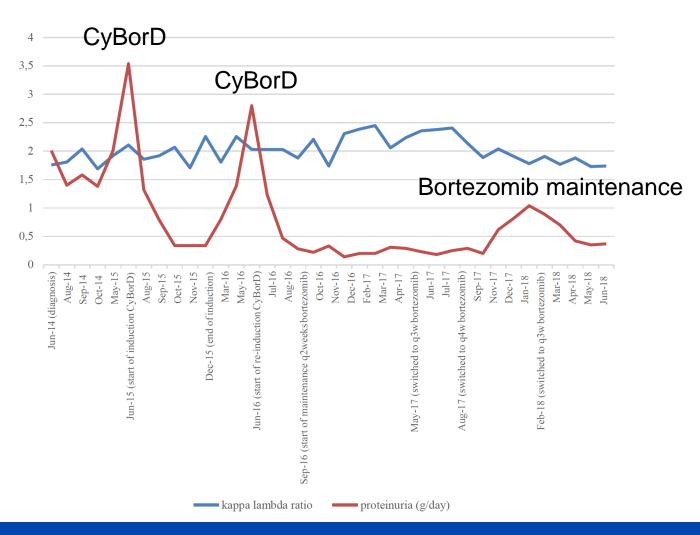
Taxiarchis V. Kourelis, ¹ Samih H. Nasr, ² Angela Dispenzieri, ¹ Shaji K. Kumar, ¹ Morie A. Gertz, ¹ Fernando C. Fervenza, ³ Francis K. Buadi, ¹ Martha Q. Lacy, ¹ Stephen B. Erickson, ³ Fernando G. Cosio, ³ Prashant Kapoor, ¹ John A. Lust, ¹ Suzanne R. Hayman, ¹ Vincent Rajkumar, ¹ Steven R. Zeldenrust, ¹ Stephen J. Russell, ¹ David Dingli, ¹ Yi Lin, ¹ Wilson Gonsalves, ¹ Elizabeth C. Lorenz, ³ Ladan Zand, ³ Robert A. Kyle, ¹ and Nelson Leung ^{1,3}*



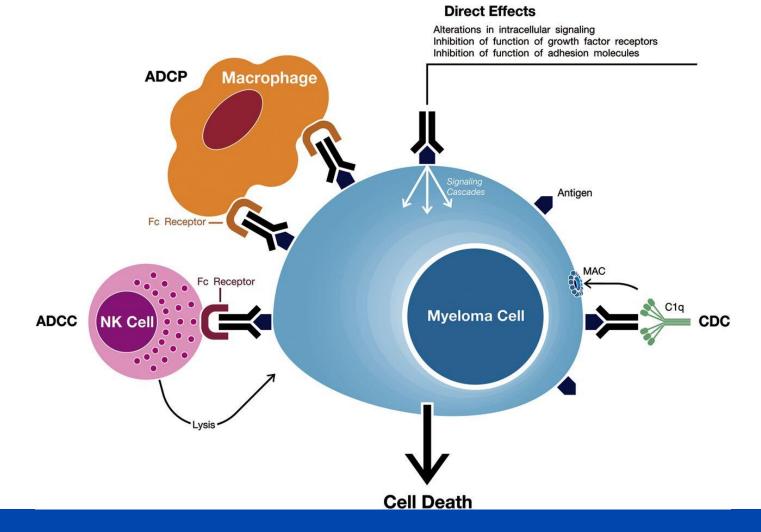
Prolonged renal survival in light chain amyloidosis:

see commentary on page 1321

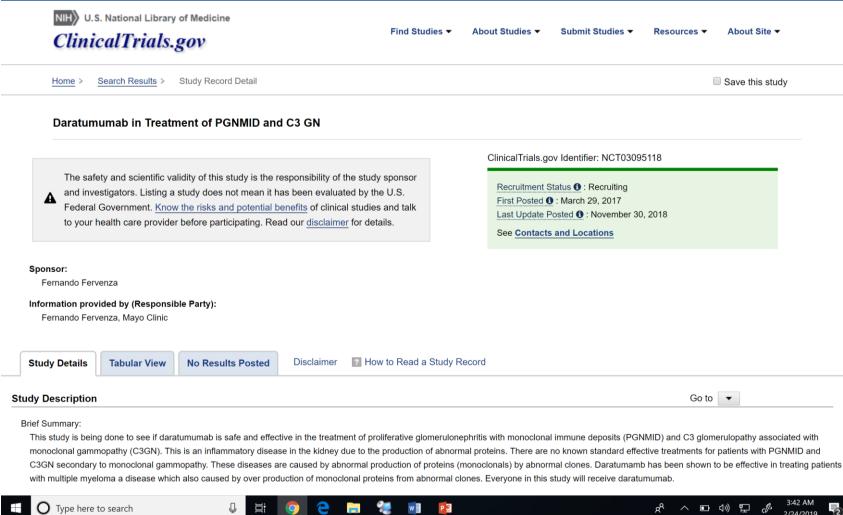
speed and magnitude of light chain reduction is the crucial factor


Treatment Duration and Durability of Response

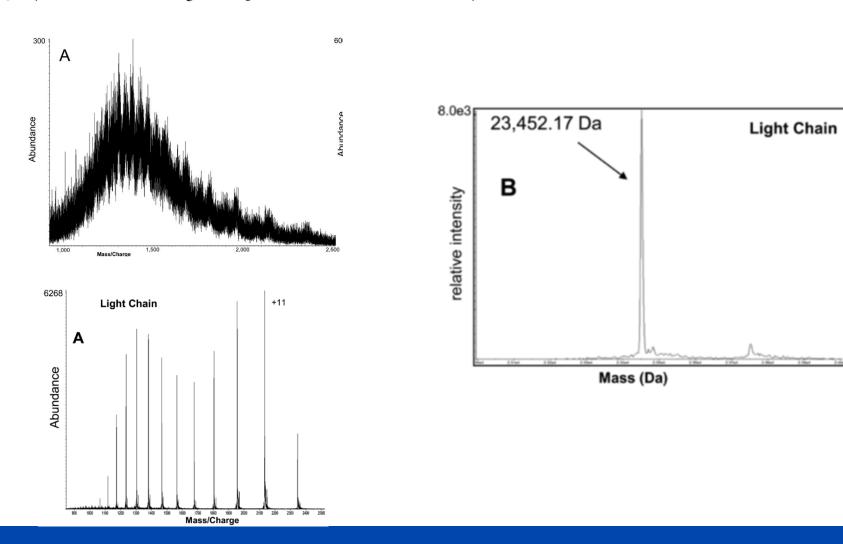
- Treatment duration (cycles)
 - Cohen (bortezomib based) 4.5 (3 6)
 - Ziogas (Vd/VCD) 5 (4 6)
- Duration of response
 - Cohen after achieving a VGPR with bortezomib based treatment, median time to progression – 8.8 years
 - Kourelis time to hematologic progression was 55 m in patients with VGPR or better vs 23 months in those with < VGPR.
- Maintenance therapy is usually not required unless the patient has a history of relapse


Bortezomib Maintenance for the Treatment of Monoclonal Gammopathy of Renal Significance

Holly Lee¹, Peter Duggan², Paola Neri², Jason Tay² and Victor H Jimenez-Zepeda².

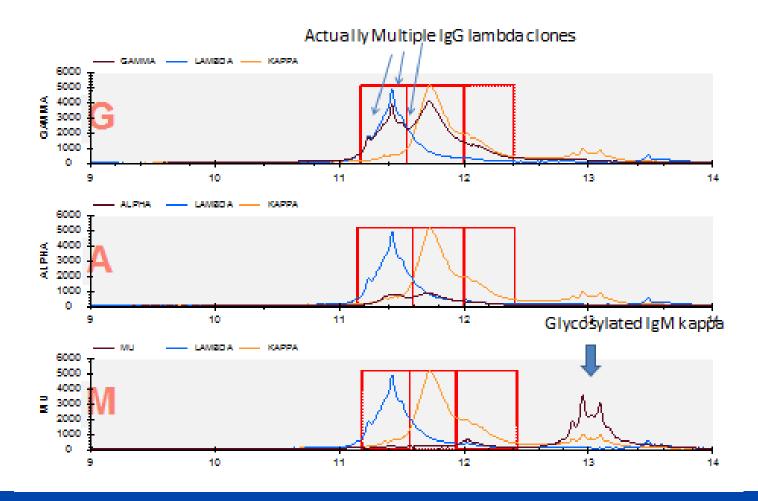


Antibody mediated cellular toxicity of daratumumab


Open label Daratumumab

Using Mass Spectrometry to Monitor Monoclonal Immunoglobulins in Patients with a Monoclonal Gammopathy

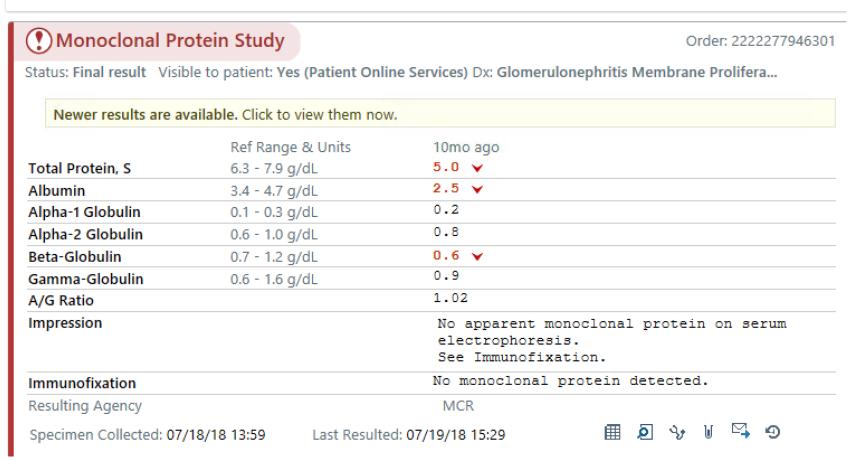
David R. Barnidge,[†] Surendra Dasari,[‡] Chad M. Botz,[†] Danelle H. Murray,[†] Melissa R. Snyder,[†] Jerry A. Katzmann,[†] Angela Dispenzieri,[†] and David L. Murray*,[†]



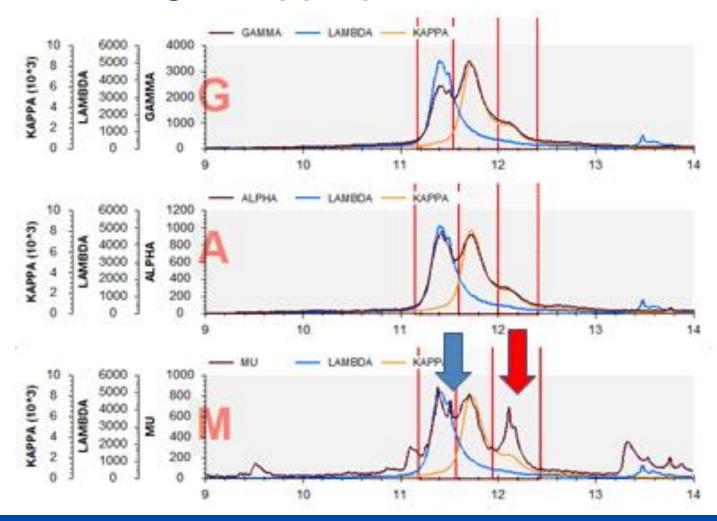
Single IgG kappa Patient over 7 years

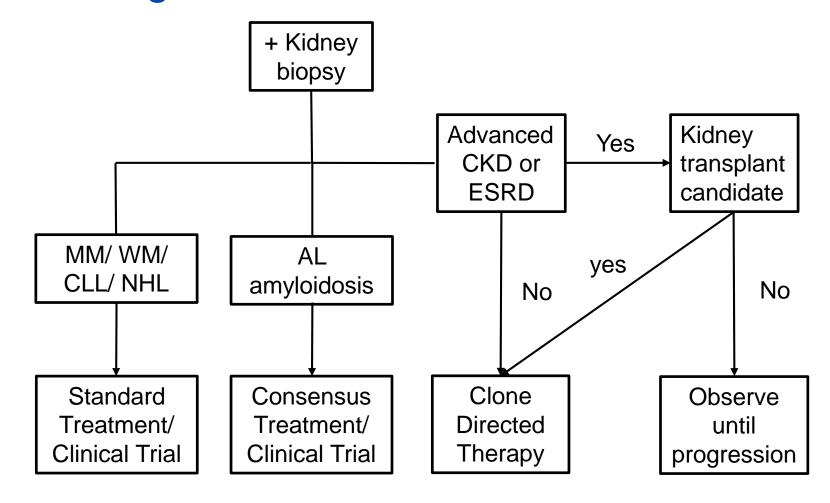
Sample Date	M- spike (g/dL)	IFE	FLC ratio	miRAM M	Mass (Da)	miRAM M Peak Area
2/23/2005	4.8	Pos	Inc.	Pos	2345 3	3,010,90
3/292006	0.26	Pos	Inc.	Pos	2345 2	34,839
4/26/2007	0	Neg	Nml	Pos	2345 2	9,300
10/11/2007	0	Neg	Nml	Pos	2345 2	11,500
4/23/2008	0.54	Pos	Inc	Pos	2345 2	152,021
5/7/2009	0.43	Pos	Inc.	Pos	2345 2	322,400
7/27/2010	3.24	Pos	Inc.	Pos	2345 2	2,875,10 0
8/22/2011	0	Neg	Nml	Pos	2345 2	2100
3/5/2012	0.79	Pos	Inc.	Pos	2345 2	600,300

Detection of multiple monoclonal IgG lambda clones



Serum immunofixation


Results



IgM lambda and IgM kappa peaks on Mass-Fix

Treatment Algorithm

Thank you for your attention

Questions

Welcome to mSMART: The Risk Adapted Approach to Management of Multiple Myeloma and Related Disorders

Ailawadhi, Sikander, M.D. Bergsagel, Leif, M.D. Buadi, Francis, M.D. Chanan-Khan, Asher, M.D. Chesi, Marta, Ph.D. Dalton, Robert, M.D. Dingli, David, M.D., Ph.D. Dispenzieri, Angela, M.D. Drake, Matthew, M.D., Ph.D. Fonseca, Rafael, M.D. Gertz, Morie, M.D. Go. Ronald, M.D. Hashmi, Shahrukh, M.D. Hayman, Suzanne, M.D. Hwa, Lisa, RN-CNP Kapoor, Prashant, M.D. Kumar, Shaji M.D.

Lacy, Martha, M.D.
Leung, Nelson, M.D.
Lin, Yi, M.D., Ph.D.
Lust, John, M.D., Ph.D.
Mikhael, Joseph, M.D.
Rajkumar, S. Vincent, M.D.
Reeder, Craig, M.D.
Roy, Vivek, M.D.
Russell, Stephen, M.D., Ph.D.
Sher, Taimur, M.D.
Siddiqui, Mustaqeem, M.D.
Stewart, Keith, MB ChB
Thome, Stephan, M.D.
Witzig, Thomas, M.D.
Zeldenrust, Seven, M.D., Ph.D.

Kyle, Robert, M.D.

MISSION

Our MISSION is to present the state of the art approach to management of these plasma cells disorders including Myeloma, Amyloidosis, and Waldenstroms Macroglobulinemia. Views expressed here are opinions of a group of experts, based on best available evidence

