Monoclonal Gammopathies and Their Significance

Cindy Varga, MD
Assistant Professor
Tufts Medical Center
May 23rd, 2019

International Kidney and Monoclonal Gammopathy

Disclosure of Conflict of Interest

	I do not have a relationship with a for-profit and	I/or a not-for-profit organization to
(disclose	

I have a relationship	with a for-profit and	d/or a not-for-profi	t organization to disclose

Nature of relationship(s)	Name of for-profit or not-for-profit organization(s)	Description of relationship(s)
Any direct financial payments including receipt of honoraria	None	
Membership on advisory boards or speakers' bureaus	None	
Funded grants or clinical trials	None	
Patents on a drug, product or device	None	
All other investments or relationships that could be seen by a reasonable, well-informed participant as having the potential to influence the content of the educational activity	None	

Case

- 66 year old male with stable IgM kappa MGUS (0.2g/dL) and history of hypertension, diabetes and CKD
- He presents to clinic with a subtle decline in kidney function

- What are your next diagnostic steps?
- What is your threshold to perform a kidney biopsy?

Key questions

- In a population of patients with MGUS and chronic kidney disease, how prevalent is MGRS?
- How does a population of patients with MGRS differ from other patients with MGUS?
- Is renal biopsy being underutilized in the workup of possible MGRS?

Existing research

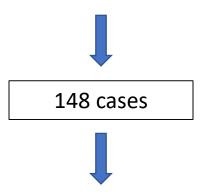
Research Paper

Monoclonal gammopathy of renal significance (MGRS) increases the risk for progression to multiple myeloma: an observational study of 2935 MGUS patients

- In a population of 2935 patients with MGUS, MGRS was diagnosed in 44 (1.5%)
- MGRS patients had significantly more progression to MM compared to other MGUS patients (18% vs. 3%, p <0.001)

Study design

 Identified all patients with both MGUS and CKD seen at Tufts Medical Center between 2000-2017


 Searched inpatient and outpatient EMR using ICD-9 and ICD-10 codes corresponding to each diagnosis

246 cases

Eliminated cases not meeting definition of MGUS (lymphoma, amyloidosis or Waldenstrom's macroglobunemia) at study onset

Eliminated cases not meeting definition of CKD by eGFR <60 or by presence of other markers of kidney damage (ie. proteinuria)

Baseline characteristics

Characteristic at Onset	MGUS + CKD population (n =144)	
Age (median, years)	78	
Gender (n, %)		
Male	85 (59%)	
Female	59 (41%)	
Race (n, %)		
White	96 (66.7%)	
Black	21 (14.6%)	
Asian	22 (15.3%)	
Other	5 (3.5%)	
Co-morbidities (n, %)		
Hypertension	113 (78.5%)	
Coronary Artery Disease	44 (30.6%)	
Diabetes Mellitus	50 (34.2%)	
M-spike* (median, g/dL)	0.54	
κ/λ in kappa gammopathies	1.83	
(median)		
κ/λ in lambda gammopathies	0.82	
(median)		
eGFR (median,	48	
mL/min/1.73m2)		
Creatinine (median, mg/dL)	1.4	
Protein/creatinine* (median,	39	
mg/g)		
Albumin creatinine*	90	
(median, mg/g)		
Bone marrow biopsy	53 (36.8%)	
performed (n, %)		
Kidney biopsy performed (n,	19 (13.2%)	
%)	-	

Results

- In 3/144 (2.1%) patients, MGRS was confirmed by kidney biopsy
 - 2/3 were treated with chemotherapy
 - Negative SPEP/IFE, UPEP/IFE, bone marrow biopsy in 1 patient
 - 1/3 not treated due to active infection
- MGRS was <u>considered</u> as cause of kidney dysfunction in 20/144 patients (13.9%)
 - Only 6 were further worked with kidney biopsy

Results

Possible MGRS cases	Absolute number	Percent of study population
MGRS confirmed by biopsy, treated with chemotherapy	2	1.4%
MGRS confirmed by biopsy, not treated with chemotherapy	1	0.7%
MGUS thought to be only cause of kidney disease, unknown if biopsy performed, presumably not treated with chemotherapy	1	0.7%
Other abnormal kidney biopsy without formal diagnosis of MGRS	2	1.4%
MGRS considered as one of possible causes of kidney disease	14	9.7%

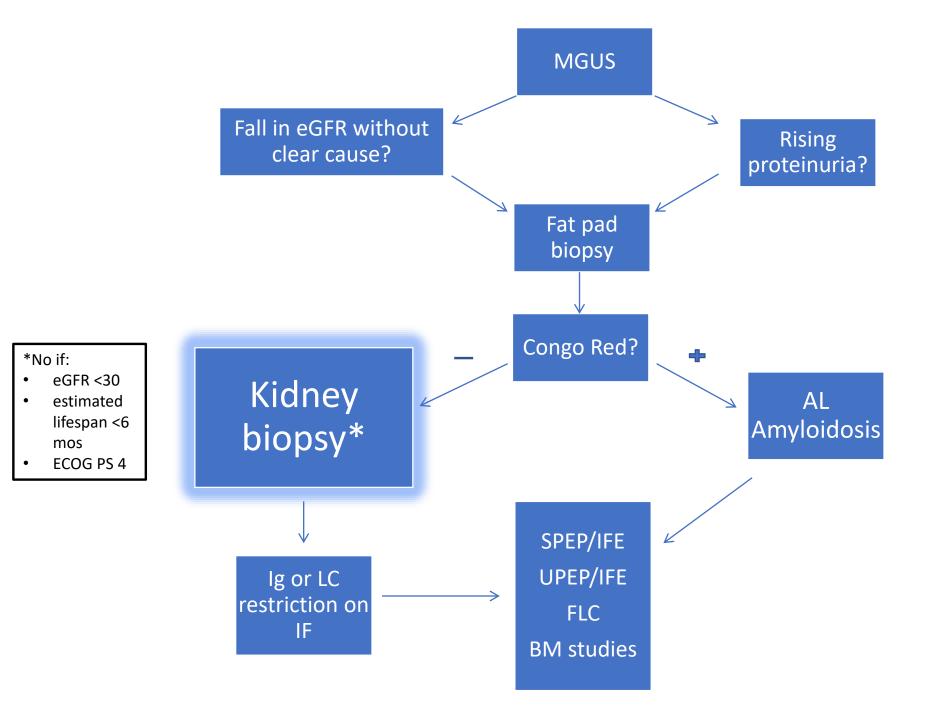
CKD stage

	Total study	Population with
	population $(n = 144)$	suspected or confirmed
		MGRS (n=20)
1	2 (1.4%)	0 (0%)
2	33 (22.9%)	3 (15.0%)
3A	27 (18.8%)	4 (20.0%)
3B	33 (22.9%)	3 (15.0%)
4	25 (17.4%)	6 (30.0%)
5	22 (15.3%)	4 (20.0%)
Unknown	2 (1.4%)	0 (0%)

Features of kidney disease

	Total study population (n = 144)	Population with suspected or confirmed MGRS (n = 20)
Hypertension	40 (27.8%)	13 (65.0%)
Diabetes	20 (13.9%)	5 (25%)
Cast nephropathy**	4 (2.8%)	0 (0%)
AKI, excluding cardiorenal	21 (14.6%)	3 (15.0%)
Cardiorenal/heart failure, valvular	10 (6.9%)	0 (0%)
disease		
Liver disease	1 (0.7%)	1 (5.0%)
Glomerulonephritis	5 (3.5%)	1 (5.0%)
Other glomerular disorder	5 (3.5%)	1 (5.0%)
(membranous nephropathy, focal		
segmental glomerulosclerosis, IgA		
nephropathy, nephrotic syndrome)		
Renal artery stenosis	5 (3.5%)	0 (0%)
Drug toxicity (tenofovir,	6 (4.2%)	0 (0%)
cyclosporine, tacrolimus, levofloxacin		
causing acute interstitial nephritis)		
Polycystic kidney disease	1 (0.7%)	0 (0%)
Other anatomic issues (single kidney,	6 (4.2%)	1 (5.0%)
resection of kidney for mass, atrophic		
kidney)		
Unknown/not specified	51 (35.4%)	0 (0%)

Biopsies!


- Bone marrow
 - 53/144 total patients (36.8%) had bone marrow biopsy
 - 12/20 patients (60%) in whom MGRS was considered had bone marrow biopsy
- Kidney
 - 19/144 total patients (13.1%) had kidney biopsies
 - 6/20 patients (30%) in whom MGRS was considered had kidney biopsy

Disease progression

- Out of total study population (n= 144):
 - 8 (5.6%) progressed to smoldering or symptomatic multiple myeloma
 - 1 (0.7%) progressed to Waldenstrom's macroglobulinemia
 - 1 (0.7%) progressed to multiple myeloma + amyloid
- MGRS considered or confirmed (n = 20)
 - 1 (5%) progressed to multiple myeloma

Back to the case!

- Patient underwent kidney biopsy, that found: monoclonal immunoglobulin deposition disease (MIDD) and diabetic glomerulopathy
- Treated with Rituxan
 - Treatment ultimately discontinued given worsening Mspike and kidney function

Early detection is key!

- Organ failure occurs_silently and can be irreversible
- Early treatment of these small clones can lead to superior survival compared to patients with multiple myeloma
- In individuals with MGUS and kidney disease, consider renal biopsy to evaluate for MGRS

Acknowledgments

- Tufts Medical Center
 - Anupama Kumar
 - Raymond Comenzo

